Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(2): 1314-1321, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108190

RESUMO

New materials for transparent luminescent solar concentrators (TLSCs) are of large interest. Therefore, we investigated the optical properties of J-aggregates-like oligomers (hereinafter referred to as J-aggregates) based on covalently bound squaraine dyes in toluene solvent using DFT and TD-DFT methods. In addition, the rate constants needed for the prediction of fluorescence quantum yield (QY) have been calculated using Fermi's Golden rule and vertical harmonic approximation (VH) for ground and excited states. In the context of QY prediction, different broadening of the lineshape has also been employed. We found that J-aggregates based on squaraine dyes exhibit near-infrared (NIR) selective absorption and emission as well as high fluorescence QY. Comparison of the properties obtained for dimers, trimers and tetramers belonging to two classes (SQA and SQB) of J-aggregates allows us to select the tetramer of SQA J-aggregates as suitable for application. The scaling model for N ≥ 4 monomer subunits supports quantitative findings. Therefore, we propose J-aggregates containing N ≥ 4 subunits of SQA with a central squaric acid ring with two oxygen atoms in toluene solvent as a suitable candidate for TLSC application.

2.
ACS Nano ; 17(17): 16644-16655, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638669

RESUMO

Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.

3.
Commun Chem ; 6(1): 97, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217712

RESUMO

In photodynamic therapy (PDT), light-sensitive photosensitizers produce reactive oxygen species (ROS) after irradiation in the presence of oxygen. Atomically-precise thiolate-protected gold nanoclusters are molecule-like nanostructures with discrete energy levels presenting long lifetimes, surface biofunctionality, and strong near-infrared excitation ideal for ROS generation in PDT. We directly compare thiolate-gold macromolecular complexes (Au10) and atomically-precise gold nanoclusters (Au25), and investigate the influence of ligands on their photoexcitation. With the ability of atomically-precise nanochemistry, we produce Au10SG10, Au10AcCys10, Au25SG18, and Au25AcCys18 (SG: glutathione; AcCys: N-acetyl-cysteine) fully characterized by high-resolution mass spectrometry. Our theoretical investigation reveals key factors (energetics of excited states and structural influence of surface ligands) and their relative importance in singlet oxygen formation upon one- and two-photon excitation. Finally, we explore ROS generation by gold nanoclusters in living cells with one- and two-photon excitation. Our study presents in-depth analyses of events within gold nanoclusters when photo-excited both in the linear and nonlinear optical regimes, and possible biological consequences in cells.

5.
RSC Adv ; 13(9): 6010-6016, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816089

RESUMO

Theoretical study of structural, optical, and photovoltaic properties of novel bio-nano hybrids (dye-nanocluster), as well as at TiO2 surface model support is presented in the context of the application for dye-sensitized solar cells (DSSC). A group of anthocyanidin dyes (pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin) represented by cyanidin covalently bound to silver nanoclusters (NCs) with even or odd number of valence electrons have been investigated using DFT and TDDFT approach. The key role of nanoclusters as acceptors in hybrids cyanidin-NC has been shown. The nanoclusters with an even number of valence electrons are suitable as acceptors in hybrids. The interaction of bio-nano (cyanidin-NC) hybrid with the TiO2 surface model has been investigated in the context of absorption in near-infrared (NIR) and charge separation due to donor and acceptor subunits. Altogether, the theoretical concept serves to identify the key steps in the design of novel solar cells based on bio-nano hybrids at TiO2 surface for DSSC application.

6.
Chembiochem ; 24(4): e202200524, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36285807

RESUMO

Luminescent gold nanoclusters are rapidly gaining attention as efficient theranostic targets for imaging and therapeutics. Indeed, their ease of synthesis, their tunable optical properties and tumor targeting make them potential candidates for sensitive diagnosis and efficacious therapeutic applications. This concept highlights the key components for designing gold nanoclusters as efficient theranostics focusing on application in the field of oncology.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Medicina de Precisão , Ouro/uso terapêutico , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico
7.
J Phys Chem C Nanomater Interfaces ; 126(43): 18306-18312, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366756

RESUMO

For very small nanocluster-based catalysts, the exploration of the influence of the particle size, composition, and support offers precisely variable parameters in a wide material search space to control catalysts' performance. We present the mechanism of the CO2 methanation reaction on the oxidized bimetallic Cu3Pd tetramer (Cu3PdO2) supported on a zirconia model support represented by Zr12O24 based on the energy profile obtained from density functional theory calculations on the reaction of CO2 and H2. In order to determine the role of the Pd atom, the performance of Cu3PdO2 with monometallic Cu4O2 at the same support has been compared. Parallel to methane formation, the alternative path of methanol formation at this catalyst has also been investigated. The results show that the exchange of a single atom in Cu4 with a single Pd atom improves catalyst/s performance via lowering the barriers associated with hydrogen dissociation steps that occur on the Pd atom. The above-mentioned results suggest that the doping strategy at the level of single atoms can offer a precise control knob for designing new catalysts with desired performance.

8.
Angew Chem Int Ed Engl ; 61(43): e202209645, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36005739

RESUMO

Noble metal nanoclusters allow for the atomically-precise control of their composition. However, to create nanoclusters with pre-defined optical properties, comprehensive description of their structure-property relation is required. Here, we report the gold atom doping impact on one-photon and two-photon absorption (TPA) and luminescence properties of ligated silver nanoclusters via combined experimental studies and time-dependent density functional theory simulations (TD-DFT). We synthesized a series of Ag25-x Aux (DMBT)18 nanoclusters where x=0, 1 and 5-10. For Ag24 Au1 (DMBT)18 we demonstrate that the presence of the central Au dopant strongly influences linear and non-linear optical properties, increasing photoluminescence quantum yield and two-photon brightness, with respect to undoped silver nanoclusters. With improved TPA and luminescence, atomically-precise AuAg alloys presented in our work can serve as robust luminescent probes e.g. for bioimaging in the second biological window.

9.
Chemistry ; 28(39): e202200570, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35703399

RESUMO

Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Ligantes , Nanopartículas Metálicas/química , Soroalbumina Bovina/química
10.
ACS Chem Neurosci ; 13(4): 464-476, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080850

RESUMO

The purpose of the current study is to uncover the impact of small liganded gold nanoclusters with 10 gold atoms and 10 glutathione ligands (Au10SG10) on several biomarkers in human microglia. We established the links connecting the atomically precise structure of Au10SG10 with their properties and changes in several biomolecules under oxidative stress. Au10SG10 caused the loss of mitochondrial metabolic activity, increased lipid peroxidation and translocation of an alarmin molecule, high mobility group box 1 (HMGB1), from the nucleus to the cytosol. Molecular modeling provided an insight into the location of amino acid interaction sites with Au10SG10 and the nature of bonds participating in these interactions. We show that Au10SG10 can bind directly to the defined sites of reduced, oxidized, and acetylated HMGB1. Further studies with similar complementary approaches merging live-cell analyses, determination of biomarkers, and cell functions could lead to optimized gold nanoclusters best suited for diagnostic and bioimaging purposes in neuroscience.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Microglia , Modelos Moleculares
12.
Cancers (Basel) ; 13(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439360

RESUMO

Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation. This article reviews liganded nanoclusters among the different nanomaterials used for molecular cancer diagnosis and the relevance of this new class of nanomaterials as non-linear optical probe and contrast agents.

13.
J Chem Phys ; 154(22): 224301, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241235

RESUMO

Electrospray ionization of phenyl argentates formed by transmetalation reactions between phenyl lithium and silver cyanide provides access to the argentate aggregates, [AgnPhn+1]-, which were individually mass-selected for n = 2-8 in order to generate their gas-phase Ultraviolet Photodissociation (UVPD) "action" spectra over the range 304-399 nm. A strong bathochromic shift in optical spectra was observed with increasing size/n. Theoretical calculations allowed the assignment of the experimental UVPD spectra to specific isomer(s) and provided crucial insights into the transition from the 2D to 3D structure of the metallic component with the increasing size of the complex. The [AgnPhn+1]- aggregates contain neither pronounced metallic cluster properties nor ligated metallic cluster features and are thus not superatom complexes. They therefore represent novel organometallic characteristics built from Ag2Ph subunits.

14.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670858

RESUMO

Interleukin-6 (IL-6) is involved in physiological and pathological processes. Different pharmacological agents have been developed to block IL-6 deleterious effects and to recover homeostatic IL-6 signaling. One of the proposed nanostructures in pre-clinical investigations which reduced IL-6 concentrations is polyglycerol dendrimer, a nano-structure with multiple sulfate groups. The aim of the present study was to uncover the type of binding between critical positions in the human IL-6 structure available for binding dPGS and compare it with heparin sulfate binding. We studied these interactions by performing docking simulations of dPGS and heparins with human IL-6 using AutoDock Vina. These molecular docking analyses indicate that the two ligands have comparable affinities for the positively charged positions on the surface of IL-6. All-atom molecular dynamics simulations (MD) employing Gromacs were used to explore the binding sites and binding strengths. Results suggest two major binding sites and show that the strengths of binding are similar for heparin and dPGS (-5.5-6.4 kcal/ mol). dPGS or its analogs could be used in the therapeutic intervention in sepsis and inflammatory disorders to reduce unbound IL-6 in the plasma or tissues and its binding to the receptors. We propose that analogs of dPGS could specifically block IL-6 binding in the desired signaling mode and would be valuable new probes to establish optimized therapeutic intervention in inflammation.


Assuntos
Dendrímeros/química , Glicerol/farmacologia , Interleucina-6/antagonistas & inibidores , Modelos Moleculares , Polímeros/farmacologia , Anti-Inflamatórios/farmacologia , Heparina , Humanos , Inflamação , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
15.
Nanoscale ; 13(5): 3173-3183, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33527928

RESUMO

Ultra-small gold nanoclusters (AuNCs) with designed sizes and ligands are gaining popularity for biomedical purposes and ultimately for human imaging and therapeutic applications. Human non-tumor brain cells, astrocytes, are of particular interest because they are abundant and play a role in functional regulation of neurons under physiological and pathological conditions. Human primary astrocytes were treated with AuNCs of varying sizes (Au10, Au15, Au18, Au25) and ligand composition (glutathione, polyethylene glycol, N-acetyl cysteine). Concentration and time-dependent studies showed no significant cell loss with AuNC concentrations <10 µM. AuNC treatment caused marked differential astrocytic responses at the organellar and transcription factor level. The effects were exacerbated under severe oxidative stress induced by menadione. Size-dependent effects were most remarkable with the smallest and largest AuNCs (10, 15 Au atoms versus 25 Au atoms) and might be related to the accessibility of biological targets toward the AuNC core, as demonstrated by QM/MM simulations. In summary, these findings suggest that AuNCs are not inert in primary human astrocytes, and that their sizes play a critical role in modulation of organellar and redox-responsive transcription factor homeostasis.


Assuntos
Ouro , Nanopartículas Metálicas , Astrócitos , Humanos , Ligantes , Fatores de Transcrição
16.
Commun Chem ; 4(1): 69, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-36697618

RESUMO

Atomically precise, ligand-protected gold nanoclusters (AuNCs) attract considerable attention as contrast agents in the biosensing field. However, the control of their optical properties and functionalization of surface ligands remain challenging. Here we report a strategy to tailor AuNCs for the precise detection of protein carbonylation-a causal biomarker of ageing. We produce Au15SG13 (SG for glutathione) with atomic precision and functionalize it with a thiolated aminooxy moiety to impart protein carbonyl-binding properties. Mass spectrometry and molecular modelling reveal the key structural features of Au15SG12-Aminooxy and its reactivity towards carbonyls. Finally, we demonstrate that Au15SG12-Aminooxy detects protein carbonylation in gel-based 1D electrophoresis by one- and two-photon excited fluorescence. Importantly, to our knowledge, this is the first application of an AuNC that detects a post-translational modification as a nonlinear optical probe. The significance of post-translational modifications in life sciences may open avenues for the use of Au15SG13 and other nanoclusters as contrast agents with tailored surface functionalization and optical properties.

17.
J Phys Chem A ; 124(49): 10143-10151, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245238

RESUMO

Fluorophores that emit in the near-infrared (NIR, 700-1700 nm) and have high quantum yields are urgently needed for many technical applications such as organic light-emitting diodes or bioimaging. The design of such chromophores is hampered by the energy gap law, which states that shifting the emission to lower wavelengths is accompanied by a dramatic increase in the nonradiative decay rate. In this article we argue that linear oligomers with J-type excitonic coupling are ideal NIR fluorophores because of the advantageous dependence of the emission energy and the radiative and nonradiative rates on the length N over which the excitation is delocalized. The lowering of the emission energy due to exciton splitting and the linear increase of the radiative rate with length (super-radiance) are well understood. However, less attention has been paid to the decrease of the nonradiative rate with length, which can compensate for the exponential increase due to the energy gap law. According to the exciton model, the Huang-Rhys factors decrease like N-2 while the strength of the nonadiabatic coupling remains approximately constant. Plugging these relations into the Englman-Jortner's energy gap law, we show that for excitonic coupling that is not too strong the nonradiative rate decreases quickly with N. This phenomenon explains the decrease of the nonradiative rate with length in J-aggregates of carbocyanine dyes and the exceptionally high fluorescence quantum yields of linear ethyne-linked zinc-porphyrin arrays, which seemed to defy the energy gap law.

18.
J Chem Phys ; 152(5): 054107, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035434

RESUMO

For the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help. However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy into vibrational energy, the highly excited final vibrational states deviate greatly from harmonic oscillator eigenfunctions. We employ a time-dependent formalism to compute radiative and non-radiative rates for transitions and study the dependence on model parameters. For several coumarin dyes, we compare different adiabatic and vertical harmonic models (AS, ASF, AH, VG, VGF, and VH), in order to dissect the importance of displacements, frequency changes, and Duschinsky rotations. In addition, we analyze the effect of different broadening functions (Gaussian, Lorentzian, or Voigt). Moreover, to assess the qualitative influence of anharmonicity on the internal conversion rate, we develop a simplified anharmonic model. We address the reliability of these models considering the potential errors introduced by the harmonic approximation and the phenomenological width of the broadening function.

19.
Nanoscale ; 11(47): 22880-22889, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31763652

RESUMO

The reactions between silver salts and borohydrides produce a rich set of products that range from discrete mononuclear compounds through to silver nanoparticles and colloids. Previous studies using electrospray ionization mass spectrometry (ESI-MS) to track the cationic products in solutions containing sodium borohydride, silver(i) tetrafluoroborate and the bisphosphine ligands, L, bis(diphenylphosphino)methane (dppm) and bis(diphenylphosphino)amine (dppa) have identified the dications [Ag10H8(L)6]2+. Here we isolate and structurally characterize [Ag10H8(dppa)6](BF4)2, and [Ag10H8(dppa)6](NO3)2via X-ray crystallography. Both dications have nearly identical structural features consisting of a Ag10 scaffold with the atoms lying on vertices of a bicapped square antiprism. DFT calculations were carried out to suggest potential sites for the hydrides. Ion-mobility mass spectrometry experiments revealed that [Ag10H8(dppa)6]2+ and [Ag10H8(dppm)6]2+ have similar collision cross sections, while multistage mass spectrometry experiments were used to compare their unimolecular gas-phase chemistry. Although the same initial sequential ligand loss followed by cluster fission and H2 evolution is observed, the more acidic N-H of the dppa provides a more labile H for H2 loss and H/D scrambling processes as revealed by isotope labelled experiments.

20.
Phys Chem Chem Phys ; 21(43): 23916-23921, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657396

RESUMO

Gold nanoclusters (Au NCs) are an emerging class of luminescent nanomaterials but still suffer from moderate photoluminescence quantum yields. Recent efforts have focused on tailoring their emission properties. Introducing zwitterionic ligands to cap the metallic kernel is an efficient approach to enhance their one-photon excitation fluorescence intensity. In this work, we extend this concept to the nonlinear optical regime, i.e., two-photon excitation fluorescence. For a proper comparison between theory and experiment, both ligand and solvent effects should be considered. The effects of ligand shell size and of aqueous solvent on the optical properties of zwitterion functionalized gold nanoclusters have been studied by performing quantum mechanics/molecular mechanics (QM/MM) simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...